An Apple patent (number 8212859) for peripheral treatment for head-mounted displays has appeared at the U.S. Patent & Trademark Office. Could this have something to do with the rumored “iTV?” An iMac with television features? The Mac line in general?
The invention involves methods and apparatus, including computer program products, implementing and using techniques for projecting a source image in a head-mounted display apparatus for a user. A first display projects an image viewable by a first eye of the user. A first peripheral light element is positioned to emit light of one or more colors in close proximity to the periphery of the first display.
A receives data representing a source image, processes the data representing the source image to generate a first image for the first display and to generate a first set of peripheral conditioning signals for the first peripheral light element, directs the first image to the first display, and directs the first set of peripheral conditioning signals to the first peripheral light element. As a result, an enhanced viewing experience is created for the user.
Here’s Apple’s background and summary of the invention: “The present invention provides methods and apparatus for treating the peripheral area of a user’s field of view in a head mounted display, and thereby creating improved comfort and usability for head mounted displays. The peripheral area adjacent to the displayed image is treated, such that the peripheral area is coordinated with the image on the display. The coordination can be in the form of color projections, achieved, for example, by light emitting diodes (LEDs) or other displays, such that the colors surrounding the display dynamically matches what is shown on the display.
“As a result, the peripheral area ‘converges, with the display area, which reduces the ‘tunnel effect’ or ‘box effect’ experienced by the user. Various embodiments of the invention allow users to customize different viewing parameters of the head mounted displays to accommodate for variation in the individual users’ eyes.
“In general, in one aspect, the invention provides methods and apparatus, including computer program products, implementing and using techniques for projecting a source image in a head-mounted display apparatus for a user. A first display projects an image viewable by a first eye of the user. A first peripheral light element is positioned to emit light of one or more colors in close proximity to the periphery of the first display. A receives data representing a source image, processes the data representing the source image to generate a first image for the first display and to generate a first set of peripheral conditioning signals for the first peripheral light element, directs the first image to the first display, and directs the first set of peripheral conditioning signals to the first peripheral light element. As a result, an enhanced viewing experience is created for the user.
“Advantageous implementations can include one or more of the following features. The processor can receive data representing the source image from an external source. The external source can be, a portable source and can include a memory in which the source image is stored. A memory operatively coupled to the processor can be provided in which the data representing the source image is stored. The first display can have an aspect ratio of 16:9.
“The data representing the source image and the first image can be image frames of a movie. The first set of peripheral conditioning signals can include instructions for which one or more colors to display with the first peripheral light element. The first set of peripheral conditioning signals can include instructions for how long to display the one or more colors.
“The first image can include one or more colors, and the first set of peripheral conditioning signals can include instructions to display colors corresponding to at least some of the colors in the first image. The processor can divide the first image into a plurality of regions, determine a dominating color for each region, and include the dominating colors in the first set of peripheral conditioning signals. The peripheral light elements can be light emitting diodes, electro luminescent displays or organic light emitting diodes. The peripheral light elements can be located at a distance from the first display and the light from the peripheral light elements can be conveyed to the periphery of the display by optical fibers or light pipes.
“A user interface including one or more controls can be provided for providing instructions from the user to the processor about how to generate the first set of peripheral conditioning signals. A diffuser can be located in the light path between the first peripheral light element and the first eye of the user, in order to soften the light emitted by the first peripheral light element before the light reaches the first eye of the user.
“A second display can be provided for projecting an image viewable by a second eye of the user, and a second peripheral light element can be positioned to emit light of one or more colors in close proximity to the periphery of the second display. The processor can then process the data representing the source image to generate a second image for the second display and to generate a second set of peripheral conditioning signals for the second peripheral light element; direct the second image to the second display; and direct the second set of peripheral conditioning signals to the second peripheral light element. The first and second images can be horizontally translated relative to each other. The first and second images can be the same. The first and second set of peripheral conditioning signals can be the same.
“The various embodiments of the invention can be implemented to include one or more of the following advantages. One advantage is that the treatment of the peripheral area of the field of view leads to increased viewing comfort compared to conventional HMDs, and may also lead to a smaller likelihood of the user experiencing ‘motion sickness’ phenomena during extended viewing. Another advantage is that users can make individual adjustments of their HMDs to fit the distance between their eyes. Further advantages include a greater immersive experience, larger virtual field of view, and increased overall image brightness.”
The inventors are John G. Tang and Anthony M. Fadell.